
Software Engineering Workshop (SEW-30) manuscript No.
(will be inserted by the editor)

Benoit Sonntag

Hardware Memory Segmentation for New Software Model

24-28 April 2006

Abstract This article is the conclusions of a study on
the implementation of a new oriented object operating
system. Indeed, starting from the analysis of our needs in
communication for the development for our object mech-
anism, various problems appeared. In this study, we re-
veal that the poor flexibility in memory management is
the reflection of the lack of segmentation usage. Nowa-
days, some processors offer advanced mecanisms of mem-
ory management through segmentation. Unfortunately,
they are unusable some context as ANSI C programming.
At first sight, the implementation of an operating system
using such a mecanism would need prior rewriting of the
stack in order to take account for memory allocation in-
dexes. This article brings a simple and effective solution
to allow processor segmentation. Moreover, this solution
does not require any massive modification of the stack.

Keywords Segmentation · Software Model Archi-
tecture · virtual memory · stack · Object Operating
System · inter-process communication · shared memory

1 Introduction

Some recent processors offer elaborate mechanisms of
segmentation comparable with those of Multics [1]. The
essential reason of the quasi non-existence of these mech-
anisms in many operating systems is caused by the stacks.
However this mechanism can bring up a better manage-
ment of memory and its protection. Moreover, we have
known for long (cf. Multics, 1972) the possibilities offered
inter-process communication, and the help it brings for
the implementation of shared memory. Without losing
any global consideration, our study is done on the im-
plementation of the segmentation of a highly widespread
processor : the family of processors INTEL 80386 and

B. Sonntag
INRIA-Lorraine / LORIA, 615 Rue du Jardin Botanique,
BP 101, 54602 VILLERS-LES-NANCY Cedex, FRANCE
E-mail: bsonntag@loria.fr

its higher versions. We benefit from qualities of the seg-
mentation for the implementation of a new operating
system, Isaac, our subject of research. The purpose of
the project Isaac is to study and integrate concepts ob-
jects at the very heart of the operating system. However,
the solution that is brought here for the use of segmenta-
tion in a C program remains valid for another operating
system. Through its simplicity, the solution seems quite
compelling to us and very much unique.

We begin in section 1.1 by reviewing certain elements
of Unix’s memory management. Then, section 1.2 presents
our project of operating system that integrates our use of
the processor segmentation. Section 1.3 details the prob-
lem of indexing memory in high-level languages. Section
2 presents the method we followed in section 3 to measure
effectiveness of our solution. Related work is presented
in section 4, thus concluding in section 5.

1.1 Review of Linux’s memory management on a
segmented architecture

In a UNIX system, a process occupies most of the vir-
tually address-space. This does not facilitate good com-
munication and the management of memory sharing be-
tween several processes [5] or distributed systems [4] (see
fig. 1). Indeed, the present implementation of a C pro-
gram in the memory of a segmented architecture does
not use the segmentation of the processor. Precisely, it
uses the same segments for the stack as for the data. It
is clear that this use of the processor goes against the
expectations and objectives of the manufacturer. This
layout does not make it possible to detect efficiently the
overflow of the stack in the stack. In Linux, the current
solution consists in using an unusually large segment to
prevent overlapping within the size limits imposed on a
process by the system. Each process is therefore forced
to use the same virtual slots of memory, thus requesting
the abusive use of the MMU table. Indeed, each process
has its own MMU table, and in this way its own virtual

2

08048000h BFFFFFFFh

user
code

user
data

common
stack

Lost space
with page alignment

(fragmentation)

Read Only
pages

Read/Write
pages

pages
miss

Read/Write
pages

User Code segment = 0023h
User Data/Stack segment = 002Bh

Virtual Adress-Space of 3 GB (around)
busy (allocation) by process.

Free
space

Fig. 1 Vision of the addressable space of a process in
Linux/Intel.

linear space of 4Go. The size of a MMU table can reach
up to 4Mo of read-write memory.

In addition, we have noticed that code writing protec-
tion in Linux on a segmented architecture of the INTEL
386 type is not made at the level of the code segment as
INTEL [3] suggests : the code segment is an alias on the
data segment/stack. To this extent nothing prevents at
the level of segmentation from using the data segment
to write in the code (see figure 1). Nevertheless, a pro-
tection in writing exists at the level of the memorized
pages containing the code. This last point implies the
code alignment on the size of a page. On average, half of
the last allocated page is free and consequently is lost as
a result of internal fragmentation. If there is n segments
in memory and if the size of the pages is of p bytes,
fragmentation makes us loose np/2 bytes. If we take in
consideration that the code segment is not extensible, we
could imagine a system of allocation which takes it into
account and concatenates to the nearest byte the whole
of the non-extensible segments. Inter-process protection
would be maintained by segmentation and internal frag-
mentation would then disappear.

1.2 Usage of the segmentation of the processor in the
Isaac operating system

Our problem of segmentation was revealed to us within
the context of the implementation of a new operating
system, Isaac [6], based on the concept of object shar-
ing. In this section, we are going to introduce the central
problematic of this project. As in the Mach [10] system,
we stress the need for division of memory zones between
various light processes. For example, in the traditional
problem of producer/consumer, one can consider that
the producer and the consumer are different processes
which share the same data buffer. Our strategy is to ex-
tend this division in a finer cooperation between various
processes of small size. We materialize this cooperation
within our system by the use of dynamic, homogeneous
and altogether fast objects, which function directly on
the material. No other system layer is required for the
implementation of these objects and no other entity than

code
(object 1)

data
(object 1)

Common
stack

code
(object 2)

data
(object 2)

00000000h

FFFFFFFFh

FFFFFFFFh*

00000000h

FFFFFFFFh*

00000000h

* Potentially, this segment can to reach 4GB.
 The exact real size is equal code binary size.

00000000h

floating point
for extension
of data and
stack segment.

Fig. 2 Segmented vision of 2 objects Isaac: the two objects
share the same stack of execution.

the object itself must be present in our system. This
makes all the singularity and the power of our project.

Our study raises many problems primarily related to
two following contradictions :
flexibility versus performance and communication versus
system protection. Moreover, compatibility with the cur-
rent source code is not to neglect and must be accounted
for.

Among the diverse existing objects, we chose to im-
plement those present in the prototype-based languages.
Our system is built from small executables each repre-
senting a prototype of object. Each object will be able to
communicate with others by inheritance or by message
delivery in the manner of object-orientated languages
like Self [11]. Here, we use our prototype language, Lisaac
[7], notably with dynamic inheritance for Isaac operating
system design [8]. The Lisaac compiler product ANSI C
code. However, we should emphasize that the granularity
of our objects is not as fine as in languages which possess
integer or boolean types of objects. Indeed, in our operat-
ing system, we represent a physical entity of the material
by a single object (for example : a hard disk, a screen, a
keyboard). In the context of this article, we consider that
our objects all belong to the same process. It appears ob-
vious to us, that the choices at the level of the memory
manager are of primary importance to ensure a fast com-
munication between our objects. The communication is
essentially done by sending messages to an object either
client or parent. To simplify this mechanism, we need a
memory space common to all our objects. This will work
as a stack. We know that segmentation allows the sep-
aration of the code, the data and the stack in logically
independent spaces of addressing. But also, it facilitates
the sharing and the protection of these spaces [9]. Our
idea is to make better use of this mechanism to allow the
implementation of a common stack of execution between
several objects which have their own data (see fig. 2). As
in Multics [1] we chose to benefit from the advantages of
the MMU and the modularity of the segmentation.

3

00000000h FFFFFFFFh

code
obj.1

code
obj.2

data
obj.1

data
obj.2

Common
stack

Free
space

Fig. 3 Vision of the virtual linear space of Isaac.

Moreover, if one wishes that our system does not re-
main a theory, it is necessary that it has all the assets to
allow a compatibility with the current systems. Recre-
ating entirely a compiler adapted to our needs is not
desirable for two obvious reasons : the time of devel-
opment on a given architecture becomes too imposing,
and the re-use of the existing C programs becomes too
difficult. Hence for matters of portability, compatibility
and reusability, we generate our objects with a C com-
piler. This gives us a solid base for a compatibility with
GNU products. Our objects are compiled and can be seen
like an individual C programs. For example, we regard
the emacs program as an object communicating with the
libc object ensuring a Unix-type of compatibility with the
whole of our system. We produce a C program for each
Isaac object and we use a common stack to all the ob-
jects belonging to the same process. But the C compilers
do not make it possible to clearly separate stack spaces.
Still, we may have a solution which allows it without
modifying the compiler. On a whole, this allows better
memory management and finer protections than today’s.
Moreover, another consequence arises from the reduction
of the space virtually occupied by a program. This profit
makes it possible to have a single space of addressing for
several objets/programs (see fig. 3).

1.3 The problem with segmentation using a C program

In this part, we will explain why the C language is poorly
adapted to the use of segmentation. Our demonstration
stays valid for the majority of the current languages and
compilers. That it is on a 32 or 64 bits processor, the
address of an element (variable or function) in a C pro-
gram is materialized only by one index. To address an
element using segmentation, we need a couple of indexes
: the first indicates the number of the segment to be
used (segment register), the second represents the offset
pointing on the element in question. In general, the main
problem lies in the separation in two distinct segments
of the data and the stack of a program in the memory.
Indeed, in the following example, we can notice that the
system is unable to infer which of segment is containing
the data pointed by the variable Ptr. It can either point
on the stack segment, on the data, or on the code.

int global ;
void main()
{ int local ;
int *Ptr ;

switch (getch()) {
case ’G’: Ptr = &global; break;
case ’L’: Ptr = &local; break;
case ’C’: Ptr = main; break;

} ;

} ;

For most of the pointers, We can easily get to know by
flow analysis which is the segment used. Nevertheless,
this solution is not complete and forces us to make a
massive modification of the stack. For example in a Intel
architecture, it would be necessary to modify a compiler
to consider a pointer, not on 32 bits but rather on 48 bits
thus taking into account the number of the segment on
16 bits. Moreover, without a flow analysis to let us know
in the most of the cases which of the segment to con-
sider, it becomes compulsory to load a segment registers
each time we access a pointer. It appears obvious that
the overall execution performances would be profoundly
diminished.

2 Our approach

Here, we show that our solution is applicable without
massive modification of the compiler and that it admits
an acceptable loss of performance. Indeed, we do not
modify the instructions of use of the pointers generated
by the compiler. Our technique uses logical considera-
tions and some astuteness during the execution of the
program. During a pointing instruction, the processor
needs to know which segment to consider. In fact, this
information is lost by the compiler as the pointer has only
one offset. Altogether, the pre-indexation of registers of
segment is by default correct. These are the considera-
tions which will help us to solve most cases.

• the code always uses the code segment per default
i.e. that any indirect instruction of branching or call uses
implicitly the code segment register. Therefore, as the
pointers of functions or labels are always used within
the framework of execution of a block of instructions,
there’s no real problem of segmentation. Another use of
this type of pointer does not hold sense in a correctly
written program.

• The access to the local variables is always by default
on the stack segment. Thus, there is no access problem
to the local variables, even if the stack segment is differ-
ent from the data segment. For example on an INTEL
architecture, access to local variables uses the ebp in-
dex/offset register which implicitly takes the ss stack
register as segment.

• the variables whether aggregated or allocated are by
default on the data segment. For example on an INTEL
architecture, all the instructions that are not using the
ebp (base of the stack) and esp (top of the stack) index

4

registers take by default the ds register (data segment)
as default segment.

There remains only the data pointers which can be ei-
ther on the data segment or sometimes on the stack. By
default the processor always takes the register of data
to point. It is in this singular ambiguity that our sys-
tem comes into play. To guarantee a good effectiveness
and to clear any ambiguity, we decided to act not on
the generated code, but during the execution of the pro-
gram. By default, the processor will take one of the two
segments, it is only in the event of failure that we take
action. The difficulty resides in detecting an error of seg-
ment addressing at the time of use of a pointer and to
redirect addressing towards the good segment. This lies
upon three essential questions :

1. How can we detect the addressing errors due to the
segmentation?

2. How and on which segment is it necessary to redirect
this instruction of addressing?

3. How can we discern this error from a real addressing
error?

2.1 How can we detect the addressing errors due to the
segmentation?

To answer our first question, we have to consider the two
following points : first of all, we know that a segment of
the stack type starts at the top of stack up to the high-
est addresses (4 GigaBytes on 32 bits processors). On
the other hand, a data segment starts at offset zero and
extends up to the top of the stack. We can thus establish
the following intervals :

Idata = [0..x] and Istack = [y..z] with x < y and z :
Addressable offset limit.

These two intervals clearly reflect the segments de-
clared and maintained by the operating system. They
guarantee to us that addressing with an error of seg-
mentation causes a violation at the level of the operat-
ing system. This violation results in an overflow system
exception which lets us solve the problem at the time
of execution of the faulty instruction. Consequently, we
will act at the segment overflow exception to redirect the
segment register towards the good one, and thus allow
to continue the execution of the program at the level of
the faulty instruction.

2.2 How and on which segment is it necessary to
redirect this instruction of addressing?

That brings us an easy answer to this second question,
the choice of the segment is restricted to two possibili-
ties,: the stack or the data segment. A gross analysis of
the faulty instruction makes it possible to determine the

segment register in question and to know its value. If this
register points on the data segment then we redirect it
on the stack segment or conversely. Our ping-pong (flip-
flop) technique makes it possible to solve the problem of
segmentation only if that is necessary.

2.3 How can we discern this error from a real
addressing error?

The distinction of a segmentation error compared to an
error of addressing is something much more delicate.
This checking must be fast, because it does not bring
anything other than some protection. Indeed, with the
current implementation of our flip-flop in the overflow
exception, an error of addressing would cause a everlast-
ing loop without any exception triggering. To solve this
problem, we thought of two possible implementations.
The first simply consists in checking if the pointed ele-
ment belongs to the one of the two intervals. This was
not retained in our implementation as deemed ineffec-
tive. Indeed, if it is fast to detect the segment register
in question by a gross analysis of the faulty instruction,
it is not for the value of the pointer on certain instruc-
tion sets (INTEL for example). The body of the overflow
exception : The second technique rests on the use of an-
other exception system : the trace exception. Indeed,
in the Trace mode, the processor starts the trace ex-
ception at the end of each instruction. At the time of
the release of an overflow exception, two cases are to be
considered : the pointed data is on the other segment
(stack or data) or it program has indeed failed! To allow
to clear this last ambiguity, we switch the processor to
Trace mode, we redirect the register in question on the
presumedly good segment and we re-execute the instruc-
tion. Thus, in the event of admission of this instruction
by the processor, the trace exception is started. In the
event of failure, the processor releases again an overflow
exception. At this level, we know if the pointer is cor-
rect or if we have an irremediable error. In the case of a
correct pointer, the processor is switched back to normal
mode in the trace exception so that we can continue the
program execution.

If (FlagTrace) Then
Fatal Error!

Else
If (Reg.Segment == Segment.data) Then

Reg.Segment <- Segment.Stack.
Else

Reg.Segment <- Segment.data
Endif

FlagTrace <- True.
Endif.

The body of the trace execution:

FlagTrace <- False.

5

This solution although correct is not very efficient.
Indeed, triggering overflow exception is very costly. For
each segmentation problem we have two exceptions are
triggered with this algorithm. For this reason, we had
to modify slightly this algorithm to reduce the cost to a
single exception trigger in most cases. If the processor is
not switched to trace mode, one can ascertain that the
overflow exception will be produced repeatedly on the
same instruction. The idea is to lay by the position of
the faulty instruction in the overflow exception. Hence,
If the current position is the same as the previous one,
the trace mode is triggered.

The optimized body of the overflow exception :

If (FlagTrace) Then
Fatal Error!

Else
If (Reg.Segment == Segment.data) Then

Reg.Segment <- Segment.Stack.
Else

Reg.Segment <- Segment.data
Endif
If (PC_old == PC_fault) Then

FlagTrace <- True.
Endif
PC_old <- PC_fault.

Endif.

Notice : the body of the trace exception does not
undergo any modification. With this modification and
for a correctly written program, the release of two ex-
ceptions to solve a problem of segmentation is almost
non-existent. The solution we bring can be used to solve
different problems than ours related to the communica-
tion or the management of the virtual memory in existing
or future operating system.

2.4 implementation of the method

We established this method on our operating system
which uses GNU compiler GCC on a Intel 386 archi-
tecture [3]. The modifications made to the compiler are
as following :

• Detection and exit of the code segment towards the
data segment of the index tables of label generated
at the time of some important switch (to separate the
segment of code from the data).

• Detection and exit of the code segment towards the
data segment of the constant variables. (to separate
the segment from code of the data).

• Rewriting of the file describing the memory mapping
of the code and the data for the linker, thus forcing
the starting of the offsets at zero for the data.

We can see here that no modification is internal to the
compiler itself, and that as long as GCC does not change
its assembler syntax code and the mapping file for the
linker, our modifications are portable and follow the evo-
lution of the versions of the compiler.

3 Measuring Performances

To allow to quantify as well as possible the loss of perfor-
mance of our method, we took two measurements with
two variants each. The first measurement gives an idea of
the performance of our method during the execution of
a program. The second measurement is used to quantify
the loss of the performance in the worst case. For each
measurement, the first variant consists in withdrawing
the use of the tracemode to compare the speed at execu-
tion in the case of a comparison of the intervals with the
faulty pointer. The second alternative represents imple-
mentation with checking by release of the trace mode.
Measurements were taken on a 400MHz INTEL pentium
II.

3.1 Overview of the execution of a program

The purpose of this measurement is to give an idea of
the number of releases of the mechanism at the time of
program execution. As our system is currently only a
prototype, the only code of acceptable size that we have
for this type of measurement is the system in itself. It has
approximately 100000 lines of C. Our measurement is
made entirely on the loading of the system, from the boot
to the loading of the graphic interface. We also carried
out the loading of the system with the old allocation of
the segments (thus without any release of exception), but
the difference in performance in term of execution time
is negligeable.

Number of Execution
exceptions triggered Time

Without
Segmentation 0 82.27 seconds
Without trace 9015 82.92 seconds
Without trace 9015 82.92 seconds

We can note that the number of exceptions triggered
of our mecanism is relatively low. The overall perfor-
mances are down by less than one percent of execution
time. This seems satisfactory considering the possibilities
that segmentation offers in the prospect of project.

3.2 In the worst cases

Our second test puts our method under the worst condi-
tions by the program below. Indeed, with each iteration
the pointer changes segment. That causes to start our
mechanism of exception. Moreover, this release is always
carried out on the same position in the code, thus caus-
ing the implementation of the trace mode to validate
the instruction.

The second measurement was taken on the following
program :

6

int global=0;
void main()
{ int local=0, Cpt;
int *Ptr ;

for (Cpt=0;Cpt<1000000000LU;Cpt++) {
Ptr=((Cpt&1)?(&local):(&global));
(*Ptr)++;

};
};

Number of Execution
exceptions triggered Time

Without
Segmentation 0 34.16 seconds
Without trace 1 000000 000 43.04 seconds
Without trace 2 000000 000 46.37 seconds

Obviously, the performances in terms of time execu-
tion are considerably affected. We can notice an extra
cost passing from 26% to 37%. Fortunately this type of
program is not current. Besides, altogether in our Isaac
system, no release of the tracemode is necessary to solve
the problems related to segmentation. We thus avoid
double exceptions.

4 Related Work

There is no recent related work. Today, the segmentation
is used for an other usage : Extension of 32-bit pointer
for memory manager.

To my knowledge, no compiler goes so far as to take
into account the segmentation in a transparent manner,
i.e. the possibility of mapping in memory any programs
having the data and the stack in two distinct segments.
Indeed, taking it into account without a modification of
the source code is not easy. Nevertheless, amongst the
compilers which we have tested on this subject, the im-
plementation by the Watcom C1 version 11 remains in-
teresting. There is the /zu option which makes it possible
to declare during the compilation the separation of the
stack segment with that of the data. The use of this op-
tion on a C ansi source causes the generation a warning
of the type,: ‘pointer truncated‘ with each assignment of
a pointer.

Example :

/* Our C ansi Pointer */
char *Ptr;

/* A variable in the data segment */
char Global;

void main()
{ char Local; /* In the stack segment */

1 Copyright by Sybase.

/* Output a Warning: Pointer truncated */
Ptr = &Local;

(*Ptr) ++; /* A dangerous Usage ! */
};

In our example, the message indicates that we are
affecting a 48-bit pointer (segment + offset) delivered by
&Local in a variable pointer Ptr of 32 bits (offset only).
Thereafter, the use of this pointer causes the program to
stop by exception release. To solve and correct this error,
the compiler admits a new variable of pointer type on 48
bits, i.e. that it is necessary to modify the source code
by adding far to each declaration of pointer.

Here our example accepting segmentation :

/* Our 48-bit pointer (Segment + Offset).*/
char _far *Ptr;

/* Variable in the data segment.*/
char Global;

void main()
{ char Local; /* In the stack segment.*/

/* All pointers are on 48 bits*/
Ptr = &Local;

(*Ptr) ++; /* No problem !*/
};

Thus the Watcom C compiler allows segmentation
with a modification of the source code using a new type
of declaration of a pointer. Other compilers talk about
the management of the segmentation. We can quote work
of the mentor2 C compiler or the INTEL3 one. But we
could not test their implementation by the lack of com-
piler. It should be observed that in the Eighties, INTEL
developed a proprietor language ‘PLM‘ which carried out
segmented code. The paper [2] shows another approach
of the use of segmentation and of the memory manage-
ment on the INTEL processor.

5 Conclusion

In this article, we denounce and criticize the lack of use
of memory segmentation in operating systems. The ad-
vantages of this mechanism are numerous and we could
underline certain small problems in the management of
the memory which is not segmented under Unix (section
1.1). Within the framework of our research Isaac project,
its use appears natural and essential for the implementa-
tion of communication techniques (section 1.2). In prac-
tice, the current compilers do not take into account in

2 http://www.mentor.com/embedded/papers/whitepapers/
Using80x86/

3 http://www.intel.com

7

a transparent manner the processor segmentation and
worst still, make its use impossible. Moreover, we saw
that a massive modification of the compiler would be
likely to affect the performances as regards to the exe-
cution time of a program (section 1.3). By taking into
account these considerations that we propose a trans-
parent method allowing a solution of this problem with
a negligible cost of execution. This one applies without
modification of the code generated by the compiler. It is
based on the use of exception system to solve the prob-
lems of segmentation during the execution of a program
(section 2). Some rare compilers take into account the
segmentation of the processor, but that is not transpar-
ent for the programmer (section 4). The implementation
of our method in this project enabled us to validate these
performances and to achieve our goals by the use of seg-
mentation (section 3).

References

1. A Bensoussan CCRD (1972) The Multics Virtual Mem-
ory: Concepts and Design. In: Communications of ACM,
vol 15, number 5, pp 308–318

2. Tzi-cker Chiueh PP Ganesh Venkitachalam (1999) Inte-
grating segmentation and paging protection for safe, effi-
cient and transparent software extensions. In: 17th ACM
Symposium on Operating Systems Principles, ACM
Press, pp 140–153

3. Hummel RL (1992) Structure and management Mem-
ory. In: Programmer’s Technical Reference: The Proces-
sor and Coprocessor, Ziff-Davis Press, pp 83–104, ISBN :
1-56276-016-5

4. Mullender S (1993) Address-Space and Memory Man-
agement (15.2). In: Distributed Systems, Addison-Wesley
and ACM press, pp 387–191, ISBN : 0-201-62427-3

5. Rifflet JM (1994) Espace d’adressage virtuel. In: La pro-
grammations sous unix, p 410

6. Sonntag B (2000) http://isaacos.loria.fr/ or
http://www.isaacos.com. Web site of Isaac/Lisaac
project.

7. Sonntag B, Colnet D (2002) Lisaac: the power of sim-
plicity at work for operating system. In: 40th confer-
ence on Technology of Object-Oriented Languages and
Systems (TOOLS Pacific’2002), Sydney, Australia, Aus-
tralian Computer Society, pp 45–52

8. Sonntag B, Colnet D, Zendra O (2002) Dynamic In-
heritance : A powerful Mechanism for Operating Sys-
tem Design. In: Intercontinental Workshop on Object-
Orientation and Operating Systems (OOOSWS’2002) -
ECOOP’02 Workshop Reader, pp 25–30

9. Tanenbaum A (1992) Memory manager: Segmentation
(3.7). In: Modern Operating Systems, Prentice Hall, pp
144–159

10. Tanenbaum A (1992) Mach case: shared memory (15.3.2).
In: Modern Operating Systems, Prentice Hall, pp 731–
739

11. Ungar D, Smith R (1987) Self: The Power of Sim-
plicity. In: 2nd Annual ACM Conference on Object-
Oriented Programming Systems, Languages and Appli-
cations (OOPSLA’87), ACM Press, pp 227–241

